
CPS352 Lecture - Big Data; Map/Reduce Paradigm; NoSQL DBMS's

Last revised April 29, 2021
Objectives:

1. To introduce speedup and scaleup issues
2. To introduce the Map/Reduce Paradigm
3. To elucidate reasons for a desire to move to models other than the relational 

model for some applications
4. To introduce the CAP Theorem
5. To introduce key-value, document, column store, and graph data models.
6. To discuss issues involved in choosing an approach for a particular problem

Materials:

1. Projectable of map and reduce examples
2. Projectable of excerpt from a web server log file
3. Projectables of Sadalage/Fowler figures 2.1, 2.3, 2.3 with corresponding JSON, 

2.4 with corresponding JSON, 2.5
4. Prrojectable of Sadalage/Fowler Figures 11.1, 11.2

I. Introduction

A. The chapter assigned for today in the textbook talks about "Big Data".  This 
is something of a buzz word that captures the idea that applications are 
arising that depend on being able to deal with huge amounts of data - sizes 
much greater than the kinds of problems for which DBMS's were first 
developed.

1. Analytics dealing with data produced by web sites or other processors of 
large volumes of data such as Netflix.

2. All sorts of Data Mining

3. etc.
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B. With growing problem sizes and reliance on interactive access through web 
ages, several needs arise.

1. The need for SCALEUP - to make it possible to handle a greater volume of 
work in the same amount of time.  This, in turn has two sub-categories:

a. BATCH SCALEUP  may be needed to deal with the SIZE of individual 
transactions, as would occur if transactions become more complex and/or if 
the size of a database grows, so that operations such as select and join 
require scanning more tuples.

b. TRANSACTION SCALEUP  may be needed to deal with increasing the 
VOLUME of  transactions, as would occur if the number of users 
accessing the   database were to grow.

2. The need for transaction SPEEDUP - to make the processing of 
individual  transactions (of the same size) faster - to satisfy the 
expectations of interactive  users.  

3. Of course, some combination of these might apply in a given situation - 
more somewhat bigger transactions supporting interactive access. 

C. To meet such needs, new paradigms have arisen that can cope with size.  
These deal with issues like:

1. Support for computations using massive parallelism - e.g. scores, hundreds, or 
thousands of processors working together on a single problem. 
 
We will look at a specific example of this that is widely used, known as the 
map/reduce paradigm.

2. Support for handling a rate and/or size of transaction arrival that requires 
moving away from the requirement of normalized data and the support 
for ACID transactions that have characterized the relational model.
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II.Map/Reduce

A. Map/reduce is a programming paradigm that supports a very high degree of 
parallelism. 

1. Though not directly tied to NoSQL databases, it is often used in 
conjunction with them.

2. For example: Google makes considerable use of the map-reduce 
paradigm, often using data stored in one of the non-relational database 
model they have developed such as BigTable or Cloud Dataflow.

B. This paradigm makes use of two functions - a mapper and a reducer. 

1. The mapper processes aggregates to produce key-value pairs.  Since the 
processing of each aggregate is independent of the others, this can be 
done using massive parallelism. 
 
PROJECT MAP EXAMPLE

2. All the key-value pairs having the same key - presumably from multiple 
processors are collected and submitted to a reducer, which reduces them 
to a single value.  Reducing for different keys can also be done using 
massive parallelism. 
 
PROJECT REDUCE EXAMPLE

3. The most widely used example of Map/Reduce - and one included in 
your book - is Word Count - count the frequency of occurrence of words 
is a collection of documents.

4. I will look at a different one - which I found by googling for an example 
of map/reduce other than Word Count.  (Unfortunately, I couldn't seem to 
find the page again while writing this lecture!)
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C. An example of Map/Reduce.

1. As you probably know, web servers maintain a log of operations they 
perform - e.g. GETs, PUTs, etc. 

a. Each log entry includes a timestamp indicating when the request 
arrived.  

b. Large web sites may produce thousands of log entries per hour. 
 
Here's a few lines from the log file for the web server on our 
departmental site (cut off to fit the available space!)| 
 
 
 
 
PROJECT

2. Now suppose that an operation such as installation of new software on a 
web-server requires that the server be shut down for an hour.  To minimize 
the inconvenience to the users, it is desired to schedule the maintenance at a 
time when the least number of requests is anticipated.  (Some users will be 
inconvenienced - the goal is to inconvenience as few as possible.)

3. One way to choose a time would be to analyze the log files to see what 
hour during the day typically has the least traffic.  

a. In order to get reliable results, it is desired to do this with a month's 
worth of log files.

b. The size of the log files is such that use of parallel processing is 
needed to get results quickly enough.

4. The task is broken down into two parts - a map part and a reduce part - 
with a shuffle in between.
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a. In the map part 30 (or 31) processors are assigned to each analyze the 
log file for one day during the month.  The task is to count the number 
of operations done during each of the 24 hours of that day.  

i. This task is made easier by the fact that the log entries are kept in 
order of time.

ii. Nonetheless, this involves reading each line in the log and 
extracting the hour at which it was done, so a significant amount of 
computation is involved.

iii. The output of the map part is 24 pairs of numbers, each consisting 
of one of the numbers 0 to 23 (assume military time is used) and 
the number of operations logged during that hour.

b. In the reduce part, each of 24 processors is assigned to one of the 
hours of the day.  It receives the pairs from the mappers specifying the 
assigned hour - 30 pairs in all.  Its task is to reduce the pairs to the 
sum of the counts.

c. The final output is 24 pairs - each consisting of an hour number and 
the count of operations occurring during the month in that hour.   
From this information, it is easy to choose the hour with the least 
activity for the maintenance.

D. As an aside - does this remind you of anything you've done in a previous course?    

 

ASK  

 

map() and reduce() in Python - which draw on this idea though not done in 
parallel in CPS121, of course!
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III.Issues Arising From the Relational Model When Dealing with a High Rate 
of Transactions

A.  As we have noted throughout the course, the relational model has become the 
dominant database model and remains the best choice for many applications.  
However, there are good reasons why an alternate model might be desirable in 
certain cases.  The reasons why the relational model has prevailed include:

1. Support for integrating data from multiple applications, and allowing 
multiple applications to share a common database.

2. An interactive query facility which allows accessing data without custom 
programming through the use of a common language: SQL.

3. Strong support for ACID transactions that are central to maintaining 
database consistency in the face of concurrent operations and threats of 
data lost due to things like hardware failure. 

B. However, significant issues arise with the use of the relational model for some 
very large applications or those serving a large number of users 
simultaneously - e.g. Big Data Systems and web ecommerce, among others.

C. One of the key reasons for for interest in non-relational models arises from the 
ramifications of support for ACID transactions in the context of cluster or 
distributed systems.  (We will discuss distributed systems is more detail later, 
but for now we hit on some of the key issues.)

1. Traditionally, databases have been stored on single computer systems.   
 
If more performance was needed, the solution was to use a faster computer  
and disk subsystem. 
 
But there are fundamental speed and capacity limits on this, of course.  
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2. Typically, when high performance is needed, the solution of choice has 
been to use clusters of scores, hundreds, or even thousands of inexpensive 
processors - perhaps housed in a single location or multiple locations.

3. Often distributed systems are used to prevent temporarily losing the ability 
to access the database at all in the event of the failure of a single site due 
to power or network issues.

4. For a variety of reasons, when parallel and/or distributed systems are used, it is 
generally impractical to store a complete copy of the database on each of the 
systems managing it - which would entail  maintaining hundreds or thousands 
of complete copies of the database.   

a. Instead, this is typically addressed by "sharding" the data so that different 
portions are stored on different systems - which could mean that for many 
transactions only a single system needs to be accessed.  

 

The sharding scheme may be set up intentionally, or the DBMS itself may 
handle the sharding and the mapping of accesses to the correct shard.

b. In addition, each shard is generally stored in more than one place to 
avoid losing access to its data if the system on which it is stored goes 
down - which implies than an update transaction will need to update 
multiple copies.

c. Support for ACID transactions then entails communication between 
the various processors and/or physical locations when a transaction 
involves accessing data stored at more than one location or updating 
replicated data.

5. A theorem known as the CAP theorem says that, in a distributed context, you 
can have any two of Consistency, Availability, and Partition Tolerance - but you 
cannot have all three.  (In the context of the CAP Theorem, availability is 
defined in this way "Every request received  by a non-failing node in the system 
must result in a response" [ Lynch and Gilbert cited  by Sadalage and Fowler ]).
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a. Since the kinds of physical failures that result in partitioning a network are 
not avoidable, sacrificing Partition Tolerance is generally not an option, since 
this would mean shutting down the entire system should a partition occur.

b. In practice, then, this boils down to saying that there is a tradeoff 
between Consistency and Availability - where there is no one "right" 
answer for all systems.

c. This is a motivation for moving away from a database model that 
entails support for ACID transactions.

d. One alternative to strict ACID consistency in such systems is 
sometimes called  BASE - Basically Available, Soft State, Eventually 
Consistent.

6. The relational model exacerbates the problem because normalization 
typically requires partitioning entities across multiple tables - increasing 
the number of tables that must be updated atomically.  

 

This becomes a motivation for moving away from the traditional 
relational model.

D. The Normalization requirement for Relational Databases leads to needing to 
use joins - sometimes several of them - for many queries.   But joins are 
computationally expensive, which becomes a significant issue when handling 
a large volume of queries.
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E. Another Issue Relates to Structured and Unstructured Data 

1. The relational model expects that every row in a given table has the same 
set of columns, each of which holds the same type of data (whether 
atomic or non-atomic in a relational extension).  The structure of the 
individual tables - and their relationships to one another - is represented 
by an explicit schema.

2. While this works well for many applications, there are some applications 
that require the ability to handle data that is inherently nonstructured - eg 
processing involving the content of social media posts.

F. The impedance mismatch between the relational data model and the 
requirements of OO we talked about earlier, together with the performance 
implications of supporting ACID transactions in the relational model on high 
performance systems, the dependence on joins for many queries, and the need 
to deal with unstructured data in some cases has led to an interest in exploring 
other data models that differ significantly from the relational model.

1. These models are known collectively as "NoSQL models".  In much of this 
lecture, I will draw heavily on a book called NoSQL Distilled by Prasage 
Sadalage and Martin Fowler.  (In our library, and a good place to go if  you 
want to study this further.)

2. Actually, that's basically a term of convenience and something of a 
misnomer. 
 

The term was originally  used as the name for a relational database that 
didn't support SQL.  

3. The term has come to be used collectively a variety of different data 
models - most of which share some common characteristics.
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a) They are not relational, and don't use standard SQL - though some 
support a variant of SQL.   Access to information is generally done 
through a programming language interface.

b) They have no strict schema - the structure of individual records is 
dynamic and can vary from record to record.

c) They are generally - but not always - open-source.

d) They are generally - but not all - cluster-oriented.

e) The first two of these (not relational, no schema) are characteristic of all 
NoSQL models.  The last two (open-source, cluster-oriented) are not 
true of all.

4. Sadalage and Fowler distinguish four broad categories of NoSQL models: 
key-value, document, column-family, and graph.  These are all quite 
different from each other!

G. Before we look at these models in detail, though, it is worth noting that there are 
things that are lost by going this way - hence the need for considering tradeoffs.

1. Sadalage and Fowler draw a distinction between what it calls "integration 
databases" and "application databases".  

a) An integration database supports integrating multiple applications using 
a common database.  This is a strength of the relational model.

b) An application database is "owned" by a single application (like in he 
old file-processing days) - though this can be ameliorated by making 
data available through web services.

c) Relational databases do well as integration databases; while NoSQL 
databases can serve well as application databases but do not support 
integration of multiple applications with diverse requirements well.  
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One writer (C.J. Date) puts it this way:  “Although the programming 
language and database management disciplines certainly have a lot in 
common, they do also differ in in certain important aspects (of course).  To 
be specific: An application program is intended - by definition - to solve 
some specific problem. By contrast, a database is intended - again by 
definition - to solve a variety of different problems, some of which might 
not even be known at the time the database is established.” (An 
Introduction to Database Systems - 7th ed (Addison Wesley.  2000) p. 813)   

2. Support for ad-hoc queries. It would be hard to imagine an ordinary user 
formulating queries interactively in a programming language such as C++, 
Java, or C# - though some of the NoSQL models do provide some support for 
interactive queries, even including some SQL-like facilities, as we shall see. 

3. Support for “set at a time” processing - to perform some operation on all 
the members of a top-level collection, one must code a loop using 
something akin to an iterator.

4. Support for referential integrity through notion of keys, etc. 

5. For this reason, Sadalage and Martin argue for the notion of "polyglot 
persistence" - choosing the appropriate model to fit a particular set of 
needs.  This may be a relational database or one of the NoSQL models.

IV.Database Models Based on Aggregates

A. Three of the four kinds of NoSQL model store data in aggregates, rather than 
in tables.  Something of the difference between the two approaches can be 
seen from examples in the Sadalage and Fowler book:

1. The reality to be modeled. 

 

PROJECT Sadalage Figure 2.1
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2. A corresponding relational database structure 

 

PROJECT Sadalage Figure 2.2

3. An aggregate structure using two kinds of aggregates - customer and order.  
(Full information on products is represented elsewhere). 

 

PROJECT Sadalage Figure 2.3 and JSON for aggregates

4. Orders could also be embedded in the customer aggregate. 

 

PROJECT Sadalage Figure 2.4 and JSON

B. Two things are gained by using aggregates. 

 

ASK

1. Fewer disk accesses - in the second case everything needed to handle an 
order can be transferred by one disk read and one disk write.

2. Simpler code.

C. Some things are also lost by using aggregates. 

 

ASK

1. The ability to access parts of an aggregate without writing special code - 
e.g. the ability to look at all orders for a given product, rather than for a 
given customer (requires accessing all the customer aggregates.)

2. Sadalage and Fowler cite this as another example of the difference between 
integration and application databases.

D. Aggregates facilitate sharding, since if a database using aggregates is sharded, 
data that is accessed together will often end up in the same aggregate and 
hence in the same shard.
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E. Several of the NoSQL models are built on use of aggregates.

1. Key-value databases store key-value pairs - the key is a unique identifier 
and the value is an aggregate, whose internal structure is opaque to the 
database.  (Thus all the database can do is allow the program to access, 
store or delete aggregates by key, but getting at what is stored within is the 
responsibility of the application program.)

a) The value associated with a given key may be stored as JSON - as in the 
examples earlier of aggregate structures, or XML, or any sort of binary data.

b) Sadalage and Fowler suggest places where a key-value store might be 
used, including:

(1)Shopping carts - the key would be the user's identifier (like the 
user's username or email), and the value would be the entire 
contents of the shopping cart.  Stored this way, the entire cart can be 
accessed by a single disk access.

(2)User preferences / profile information - again the key would be the 
user's identifier and the values would be the users' preferences / 
profile - all accessible via a single disk access.

c) They also cite places where a key-value database might not be desirable.

(1)Applications involving relationships between items that are not part 
of the same bucket.

(2)Transactions that involve operations on two or more different 
aggregates - since. while access to a single aggregate is atomic, 
there is may be no mechanism for accessing several aggregates as a 
single atomic operation.

(3)Queries based on data stored in an aggregate.
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(4)Queries requiring access to multiple aggregates (set at a time 
processing.)

d) Amazon's DynamoDB - which it part of the Amazon Web Services 
(AWS) portfolio is a member of this family.

2. Document databases are similar to key-value databases, but have some 
knowledge of the internal structure of the aggregate - and so can allow 
some access to the content of the aggregate through the DBMS.   

a) This is done by requiring the document to be stored using a notation 
such as JSON or XML or similar.

b) However, there is no schema requiring all documents to have the same 
structure.   

c) The DBMS is able to perform queries and  based on the content of the 
document, not just on the key, and can do partial updates of the content 
of the document.

d) The DBMS also supports indexes based on the content of aggregates.

e) MongoDB - a widely-used open-source DBMS - is an example of a 
member of this family that stores documents represented using JSON.

3. Column-family databases  can be thought of as two-level aggregates - i.e. 
each aggregate is itself a map of keys and values stored in that aggregate.  
The result ends up looking something like this: 

 

PROJECT Sadalage/Fowler Figure 2.5 

 

Google's BigTable is an example of a member of this family 
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V.Graph Databases [ Omit if insufficient time ]

A. As we pointed out earlier, the term "NoSQL" is a generic term that 
encompasses a wide variety of databases.  We now consider a type of 
database that is included in the NoSQL category, though it is not an 
aggregate-oriented model (though it does share the other characteristics of 
NoSQL databases): the Graph Database.

B. One of the weaknesses of aggregate-oriented models is that relationships are only 
represented within aggregates (e.g. by physical proximity).  There is no support 
for relationships between entities in different aggregates.  A graph database, on 
the other hand, models relationships explicitly by means of nodes that represent 
entities and links that represent relationships (that can have names and values). 

 

PROJECT: Sadalage/Fowler Figure 11.1

C. Though both relational and graph databases provide for modeling 
relationships between entities, the way that they do it is very different.

1. In a relational database, the relationships are part of the schema - so every 
row in the same table participates (at least potentially) in a defined set of 
relationships.

2. In a graph database, there is no schema that defines things like:

a. What relationships a given node can participate in.

b. What properties a node may have.

c. What properties a relationship may have. 
 

PROJECT Sadalage/Fowler Figure 11.2.

F. Graph databases support a variety of queries based on traversing the graph.  
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G. In contrast to the other NoSQL models, many graph databases are designed 
to run on a single system, rather than a cluster.  If sharding becomes 
necessary for performance reasons, the shards need to be based on 
application-specific criteria, as in the following example:  But note that graph 
databases work typically work better with a single node. 

 

PROJECT Sadalage/Fowler Figure 11.3 

H. Graph databases support ACID transactions involving various nodes and 
relationships.

VI.Other Issues - Resume Covering Here if no time for Graph Databases

A. NoSQL databases are schema-less.  (The technical term is they have emergent 
schemas - i.e. each aggregate has its own schema).  This has advantages and 
disadvantages.

1. Advantages

a. No need to predefine data structures.

b. Easy to change as needed.

c. Good support for non-uniform data.

2. Disadvantages

a. Potential for inconsistent names for the same value in different 
aggregates - e.g. quantity, Quantity, QUANTITY, qty etc. 
(A scheme in a relational database would prevent this)

b. Instead, there is an implicit schema which the application must now 
enforce.  So you need to look at the code to see what the scheme is.
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c. What do you do if multiple applications need to access the same 
database?

B. In an aggregate-oriented database, relationships can pose problems.

A. There may be no DBMS support for traversing relationships (equivalent to 
foreign keys in a relational database), though some provide mechanisms to 
make link-walking easier.

B. But since there is no support for updating more than one aggregate 
atomically, updating relationships consistently can present a challenge.

C. There is no support for set-at-processing.  So something like querying all 
the orders for a given item (across multiple aggregates) is complex. 
 
Some NoSQL databases provide for precomputing results of such queries 
and storing them as materialized views.  (Some relational DBMSs have 
something similar). 
 
But how does one keep materialized views up-to-date.  Two basic 
approaches:

1. Eager approach - update view when the base data is updated.  This 
gives good support for frequent reads of a view that needs to be always 
current, but adds complexity to update operations.

2. Regular batch updates of materialized views.  The view will almost 
always be a bit stale, but in many cases this can be tolerated.
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VII.Choosing between the Relational Model and a NoSQL Approach 
 
Recall the Distinction between Integration Databases we Mentioned Earlier

A. An integration database supports integrating multiple applications using a 
common database.  When a database is to be used in this way, a relational 
database is often the best choice.

B. An application database is "owned" by a single application (like in he old file-
processing days).  In the case of a single application of a very large database where 
performance is paramount, one of the NoSQL models may be a better choice.
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